FIND ME ON

GitHub

LinkedIn

Rotation

🌱

Definition
PathPlanningManifolds

Definition

Consider two reference frames Fāƒ—a,Fāƒ—b\vec{\mathcal{F}}_{a},\vec{\mathcal{F}}_{b} found at the same origin: rāƒ—=Fāƒ—ara=Fāƒ—brb\vec{r}=\vec{\mathcal{F}}_{a}\mathbf{r}_{a}=\vec{\mathcal{F}}_{b}\mathbf{r}_{b}The vector components ra,rb\mathbf{r}_{a},\mathbf{r}_{b} are related via the dot product of the frames:Fāƒ—brb=Fāƒ—araFāƒ—bā‹…Fāƒ—bāŠ¤āŸorthogonalrb=Fāƒ—bā‹…Fāƒ—aāŠ¤āŸ=:Cbararb=Cbara\begin{align*} \vec{\mathcal{F}}_{b}\mathbf{r}_{b}&=\vec{\mathcal{F}}_{a}\mathbf{r}_{a}\\ \underbrace{ \vec{\mathcal{F}}_{b}\cdot\vec{\mathcal{F}}_{b}^{\top} }_{ \text{orthogonal} }\mathbf{r}_{b}&=\underbrace{ \vec{\mathcal{F}}_{b}\cdot \vec{\mathcal{F}}_{a}^{\top} }_{ =:\mathbf{C}_{ba} }\mathbf{r}_{a}\\ \mathbf{r}_{b}=\mathbf{C}_{ba}\mathbf{r}_{a} \end{align*}where Cba:=Fāƒ—bā‹…Fāƒ—a⊤=[bāƒ—1bāƒ—2bāƒ—3]ā‹…[aāƒ—1aāƒ—2aāƒ—3]\mathbf{C}_{ba}:=\vec{\mathcal{F}}_{b}\cdot \vec{\mathcal{F}}_{a}^{\top}=\begin{bmatrix}\vec{b}_{1} \\ \vec{b}_{2} \\ \vec{b}_{3}\end{bmatrix}\cdot \begin{bmatrix}\vec{a}_{1}&\vec{a}_{2}&\vec{a}_{3}\end{bmatrix}is the rotation matrix to frame bb from frame aa.

Properties

  1. A rotation preserves the length of the vector and the orientation of space
  2. A rotation matrix is a representation of a rotation as a 3Ɨ33\times3 orthonormal matrix.

Linked from