FIND ME ON

GitHub

LinkedIn

Transform

🌱

Definition
PathPlanningManifolds

Definition

Given the pose of one reference frame relative to another, we can transform the coordinates, rvpv\mathbf{r}_{v}^{pv}, of a point PP expressed in some frame Fāƒ—v\vec{\mathcal{F}}_{v} to another frame Fāƒ—i\vec{\mathcal{F}}_{i} in the following fashion: ripi=ripv+rivi=Cvi⊤rvpv+rivi=Cvirvpv+rivi\mathbf{r}_{i}^{pi}=\mathbf{r}_{i}^{pv}+\mathbf{r}_{i}^{vi}=\mathbf{C}_{vi}^{\top}\mathbf{r}_{v}^{pv}+\mathbf{r}_{i}^{vi}=\mathbf{C}_{vi}\mathbf{r}_{v}^{pv}+\mathbf{r}_{i}^{vi} or in block matrix form: [ripi1]=[Cvirivi0⊤1]=Tivā‹…[rvpv1]\begin{bmatrix}\mathbf{r}_{i}^{pi} \\ \mathbf{1}\end{bmatrix}=\begin{bmatrix}\mathbf{C}_{vi} & \mathbf{r}_{i}^{vi} \\ \mathbf{0}^{\top} & \mathbf{1}\end{bmatrix}=\mathbf{T}_{iv}\cdot\begin{bmatrix}\mathbf{r}_{v}^{pv} \\ \mathbf{1}\end{bmatrix}where Tiv\mathbf{T}_{iv} is the transformation matrix to frame ii from frame vv.

A transformation matrix is a representation of a rotation and a translation as a 4Ɨ44\times4 matrix.

Linked from