FIND ME ON

GitHub

LinkedIn

Driftless Control System

🌱

Control

We define a driftless control system to be one of the form {z˙(t)=G(t)u(t)z(t0)z0\begin{cases} \dot{z}(t)=G(t)u(t) \\ z(t_{0})-z_{0} \end{cases}where GC1(J;Mn×n(R)),uRm,zRnG\in C^{1}(J;M_{n\times n}(\mathbb{R})),u\in\mathbb{R}^{m},z\in\mathbb{R}^{n}.

Let’s consider a driftless control system. We define the Linear Map L:C([t0,t1],Rm)RnL:C([t_{0},t_{1}],\mathbb{R}^{m})\to \mathbb{R}^{n} to be L(u)=t0t1G(τ)u(τ)dτL(u)=\int\limits _{t_{0}}^{t_{1}}G(\tau)u(\tau) \, d\tau and we define W:R×RMn(R)W:\mathbb{R}\times \mathbb{R}\to M_{n}(\mathbb{R}) as: W(t0,t1)=t0t1G(τ)GT(τ)dτW(t_{0},t_{1})=\int\limits _{t_{0}}^{t_{1}}G(\tau)G^{T}(\tau) \, d\tau Then, we have that Image(L)=Image(W):={Wη:ηRn}\text{Image}(L)=\text{Image}(W):=\{ W\eta: \eta\in\mathbb{R}^{n} \}

Linked from