FIND ME ON

GitHub

LinkedIn

Luenberger Observer

🌱

Control

A linear state observer exists for the system (A,B,C,D)(A,B,C,D) if and only if (C,A)(C,A) is Detectable. Furthermore, this observer is given by wĖ™(t)=(A+LC)w(t)+[āˆ’LB+LD][y(t)u(t)]x^(t)=Iw(t)+[00][y(t)u(t)]\begin{align*} \dot{w}(t)&=(A+LC)w(t)+\begin{bmatrix}-L & B+LD\end{bmatrix}\begin{bmatrix}y(t) \\ u(t)\end{bmatrix}\\ \hat{x}(t)&=Iw(t)+\begin{bmatrix}0 & 0\end{bmatrix}\begin{bmatrix}y(t) \\ u(t)\end{bmatrix} \end{align*}or more simply x^Ė™(t)=Ax^(t)+Bu(t)+L(Cx^(t)+Du(t)āˆ’y(t))\dot{\hat{x}}(t)=A\hat{x}(t)+Bu(t)+L(C\hat{x}(t)+Du(t)-y(t))where LL is chosen s.t. A+LCA+LC is Hurwitz.