FIND ME ON

GitHub

LinkedIn

Total Variation

🌱

StochasticControlFunctionalAnal

For two Probability Measures μ,νP(X)\mu,\nu \in\mathcal{P}(\mathbb{X}), the total Variation metric is given by μνTV:=2supBB(X)μ(B)ν(B)=supf:f1f(x)μ(dx)f(x)ν(dx)\begin{align*} \lVert \mu-\nu \rVert _{TV} :&= 2\sup_{B\in\mathcal{B}(\mathbb{X})}\lvert\mu(B)-\nu(B)\rvert\\ &=\sup_{f:\lVert f \rVert _{\infty}\le 1}\left\lvert \int\limits f(x) \, \mu(dx)-\int\limits f(x) \, \nu(dx) \right\rvert \end{align*} where the supremum is over all measurable real ff s.t. f=supxXf(x)1\lVert f \rVert_{\infty}=\sup_{x\in\mathbb{X}}\lvert f(x)\rvert\le 1.

Let (μn)nNP(X)(\mu_{n})_{n\in\mathbb{N}}\subset \mathcal{P}(\mathbb{X}) be a sequence of Probability Measures in the space of probability measures. μnμ\mu_{n}\to \mu in total variation if μnμTV0\lVert \mu_{n}-\mu \rVert _{TV}\to0or 2supBB(X)μn(B)μ(B)02\sup_{B\in\mathcal{B}(\mathbb{X})}\left| \mu_{n}(B)-\mu(B) \right| \to0

Let X\mathbb{X} be standard Borel and let P()P(XX)P(\cdot\mid \cdot )\in\mathcal{P}(\mathbb{X}\mid \mathbb{X}) be a Stochastic Kernel. We say PP is continuous in total variation if and only if for any xXx \in\mathbb{X} then (xn)nNX\forall (x_{n})_{n\in\mathbb{N}}\subset \mathbb{X} s.t. xnxx_{n}\to x we have that P(xn)P(x) in total variationP(\cdot\mid x_{n})\to P(\cdot\mid x)\text{ in total variation}

Linked from