FIND ME ON

GitHub

LinkedIn

Proper Function

🌱

Control

A Rational Function gg where g(s)=bmsm+⋯+b1+b0sn+anāˆ’1snāˆ’1+⋯+a1s+a0g(s)=\frac{b_{m}s^{m}+\dots+b_{1}+b_{0}}{s^{n}+a_{n-1}s_{n-1}+\dots+a_{1}s+a_{0}}is called proper if lim⁔sā†’āˆžg(s)\lim_{ s \to \infty }g(s) exists or n≄mn\geq m. and is called strictly proper if lim⁔sā†’āˆžg(s)=0\lim_{ s \to \infty }g(s)=0 or n>mn>m.

Let g(s)g(s) be a proper Rational Function s.t. g(s)=cnsn+⋯+c1+c0sn+anāˆ’1snāˆ’1+⋯+a1s+a0g(s)=\frac{c_{n}s^{n}+\dots+c_{1}+c_{0}}{s^{n}+a_{n-1}s_{n-1}+\dots+a_{1}s+a_{0}} then it has an LTIC system Realization (A,B,C,D)(A,B,C,D) where A∈Mn(R)A\in M_{n}(\mathbb{R}).

Let RPRP denote the set of matrix functions which are real rational and proper.

Linked from