FIND ME ON

GitHub

LinkedIn

Transfer Function

🌱

Control

Consider the LTIC system {xĖ™(t)=Ax(t)+Bu(t)y(t)=Cx(t)+Du(t)\begin{cases} \dot{x}(t)=Ax(t)+Bu(t) \\ y(t)=Cx(t)+Du(t) \end{cases}where x(0)=0x(0)=0. We have the Laplace Transform version of this system: {sx^(s)=Ax^(s)+Bu^(s)y^(s)=Cx^(s)+Du^(s)\begin{cases} s\hat{x}(s)&=A\hat{x}(s)+B\hat{u}(s) \\ \hat{y}(s)&=C\hat{x}(s)+D\hat{u}(s) \end{cases}as a result, the input-output behaviour is given by y^(s)=G(s)u^(s)\hat{y}(s)=G(s)\hat{u}(s)where G(s)=C(sIāˆ’A)āˆ’1+DG(s)=C(sI-A)^{-1}+D is called the transfer function of the above LTIC system. We adopt the following notation (ABCD)(s):=C(sIāˆ’A)āˆ’1B+D=G(s)\begin{pmatrix}\begin{array}{c|c} A&B \\ \hline C &D \end{array}\end{pmatrix}(s):=C(sI-A)^{-1}B+D=G(s)

Let (A,B,C,D)(A,B,C,D) be a Realization for an LTIC system. The Transfer Function (ABCD)(s)=G(s)=C(sIāˆ’A)āˆ’1B+D\begin{pmatrix}\begin{array}{c|c} A&B \\ \hline C &D\end{array}\end{pmatrix}(s)=G(s)=C(sI-A)^{-1}B+Dis proper and is strictly proper if D=0D=0.

Linked from